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SOME FINITE DIFFERENCE SOLUTIONS OF T_E LAMINAR

COMPRESSIBLE BOUNDARY LAYER SHOWING

TH_ EFFECTS OF UPSTRE&M

TRANSPIRATION COOLING

By John T. Howe

SUMMARY

Three numerical solutions of the partial differential equations

describing the compressible laminar boundary layer are obtained by the

finite difference method described in reports by I. FlUgge-Lotz,

D. C. Baxter, and this author. The solutions apply to steady-state

supersonic flow without pressure gradient, over a cold wall and over an

adiabatic wall, both having transpiration cooling upstream, and over an

adiabatic wall with upstream cooling but without upstream transpiration.

It is shown that for a given upstream wall temperature, upstream

transpiration cooling affords much better protection to the adiabatic

solid wall than does upstream cooling without transpiration.

The results of the numerical solutions are compared with those of

approximate solutions. The thermal results of the finite difference
solution lie between the results of Rubesin and Inouye, and those of

Libby and Pallone. When the skin-friction results of one finite differ-

ence solution are used in the thermal analysis of Rubesin and Inouye,

improved agreement between the thermal results of the two methods of

solution is obtained.

INTRODUCTION

Cooling problems arising from high-speed flight have stimulated

interest in transpiration cooling of vehicle surfaces. Aerodynamic

heating and the need for cooling are often quite localized on an aircraft,

which makes it possible to restrict the porous surfaces associated with

transpiration cooling to selected regions on the aircraft° Structural

considerations make it desirable to limit the porous region as much as

possible° A limited region of transpiration cooling may provide some

thermal protection to regions downstream° References i and 2 have pre-

sented analytic methods for evaluating the thermal protection afforded a

surface adjacent to and downstream from a transpiration-cooled region°



The results of the two analyses differ considerably because of different
assumptions madein joining the flows at the interface between the porous
and nonporous regions. This present report does not have to makesuch
assumptions°

This report evaluates the thermal protection afforded in three flow
conditions by finite difference solutions of the laminar compressible
boundary-layer equations. The first two conditions are flow over a cooled
solid wall and an adiabatic solid wall downstreamfrom a porous
transpiration-cooled region° The third condition is flow over an adia-
batic wall downstreamfrom a solid cooled region without transpiration.
In all three flow conditions, the upstream wall temperatures are the
same. The exterior flow conditions for all cases are Me = 3.0 and
Te = 389.99° R. The latter is the tropopause (top of the troposphere)
flight temperature (ref. 3)° The results are comparedwith those of
references i and 2.

The finite difference solutions of the partial differenti_ _ =,nations
were computedon an IBM-6_0digital computer°

SYMBOLS

a

bn

Cn

velocity of sound, ft/sec

coefficient in the iuT expansion, equation (A14)

coefficient in the i2 expansion, equation (AI7)

cf

Cp

C v

CI

dn

fw

local skin-friction coefficient, 1 Tw

PeUe 2

specific heat at constant pressure, sq ft/sec e OR

specific heat at constant volume, sq ft/sec 2 OR

Chapman-Rubesin constant (ref. 4) based on upstream region wall

temperature

coefficient in the T2 expansion, equation (AI2)

variable proportional to blowing rate in reference 5

h qw ib/ft sec ORlocal heat-transfer coefficient,
Tw-Tad
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Ai

k

L

m

P

P

AP

Pr

q

Q

R

Re x

Re t

S

St

enthalpy, OpT, sq ft/sec 2

i
dimensionless enthalpy,

at2

enthalpy difference, sq ft/sec 2

thermal conductivity, ib/sec OR

reference length, ft

Mach number at outer edge of boundary layer

number of mesh widths from the starting value of
x-x i

X_
Ax

u

number of mesh widths from wall, _uu

static pressure, Ib/sq ft

parameter used in computer program logic (appendix C)

increment of P

Cpb

Prandtl number, 7- , 0.72 for air

-iuT Ib/ft sec
local heat-transfer rate, -kTy - Pr

parameter used in computer program logic (appendix C)

gas constant for air, sq ft/sec 2 OR

Reynolds number based on properties at outer edge of the

UeXPe
boundary layer,

_e

Reynolds number based on stagnation properties,

constant in the Sutherland law; OR

atLP t

_t

Stanton number; h
PeUeCp

T absolute temperature; OR
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u

Au

V

x

Y

7

P

P

1"

,.r +

ad

e

i

u,x,y

W

t

n=O,l,2

adiabatic wall temperature computed by equation (15) of refer-

ence 5, OR

component of velocity parallel to the surface, ft/sec

interval between mesh points in the u direction, ft/sec

component of velocity perpendicular to the surface, ft/sec

distance coordinate measured parallel to the surface, ft

distance between mesh points in the x direction, ft

distance from the surface, ft

Cp

ratio of specific heats_ _v

coefficient of viscosity, ib sec/sq ft

mass density_ ib seca/ft 4

shear stress, pUy_ ib/sq ft

dimensionless shear stress,
P tat 2

Subscripts

adiabatic wall condition

conditions at outer edge of the boundary layer

initial value of x in defining m

partial differentiation with respect to u,x,y

wall

isentropic stagnation conditions for flow at the outer edge of

the boundary layer

successive coefficients in a power series expansion

x < 1
conditions in the upstream region, _ _



Superscripts

!

+

total differentiation with respect to x

dimensionless quantity used for actual computation on digital

computer (see also ref. 6, eqs. (2.8) to (2.22))

METHOD OF SOLUTION

0nly a brief description of the method is included here. The many

details of the method can be found in references 6, 7, 8, and 9. A

mathematical description of the solution is included in appendix A. The

minor modifications to the computer program are presented in block

diagram form in appendix C.

The laminar compressible boundary-layer equations in the Crocco

form (ref. i0) are solved on a finite difference basis progressing down-

stream from x/L = i, where initial profiles (obtained from ref. 5) of

enthalpy and shear stress across the boundary layer are specified. The

specific heat, Cp, is assumed constant. Although the examples presented
do not involve pressure gradients, the method is not restricted to con-

stant pressure.

Boundary conditions at the outer edge of the boundary layer and at

the wall are incorporated in the solution as they occur. Because the

partial differential equations (AI) and (A2) cannot be solved at the wall

(i.e., u = 0), each wall point is treated by series expansions; that is,

a series expansion of T2 in terms of u, in which the coefficients are

determined by boundary conditions at the wall, is written through two

points within the boundary layer yielding an expression from which the
wall shear stress can be obtained.

Series expansions for the thermal properties are written in a similar

manner. If wall temperature is specified as a boundary condition, a

series expansion for iuT in terms of u is written through three points

in the boundary layer_ finally yielding an expression for the heat trans-

fer at the wall. If, on the other hand, the heat transfer is specified

as a boundary condition, either a series expansion for i or Simpson's

rule is used to obtain the wall temperature.

Other features of the finite difference solution are as follows.

The flow exterior to the boundary layer is specified, and is treated by

the usual isentropic flow relations. The Sutherland viscosity law is

used to compute the viscosity at each mesh point. The mesh width employed

in the finite difference scheme is determined by the stability criteria

of reference 8 such that errors tend to vanish as the numerical solution

progresses.
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A TEST EXAMPLE

The computation of each example in this report extended from

x/L = i to x/L = 2 or 2500 steps downstream from the starting profiles.

Previous examples (refs. 9 and 6) computed by this program have not been

carried that far. For this reason, it is desirable to use the program to

try to reproduce a known solution over that many steps. The test example

chosen is for flow at M e = 3.0 over a solid flat plate having wall

temperature level Tw/Tad = 0.5. The shear stress and enthalpy profiles

used to start the finite difference solution can be found in reference 9.

The results of the finite difference solution are shown as solid

lines in figure i. An exact solution taken from reference 5 is shown by

dotted lines in figure i. In the finite difference solution, series

expansions (eqs. (A13) and (AI5)) operating on the given initial profiles

resulted in skin-friction and heat-transfer parameters identical to those

of reference 5 at the start (x/L = i). At the end of 2500 steps down-

stream, the finite difference value for the skin-friction parameter

differed by less than i percent from that of reference 5. Similarly,

the heat-transfer parameter differed by i percent from that of refer-

ence 5. The solution of the finite difference equations is considered

to be correct. Figure i indicates that this correct solution of the

finite difference equations converges satisfactorily to the numerical

solution of the differential equations of reference 5 in the region

shown.

It should be mentioned that the linear viscosity law is used in

reference 5, and the Sutherland viscosity law is used in the finite

difference solution. I. E. Beckwith suggests in a private communication

that these different viscosity laws are responsible for the very small

differences between the two solutions in figure i. He points out that

in reference ll, which also uses the Sutherland viscosity law, the results

for the same example are about 1.5 percent less than the results of

reference 5.

SOLUTIONS IN A REGION DOWNSTREAM FROM A SURFACE THAT

IS COOLED WITH AND WITHOUT TRANSPIRATION

Starting Profiles and Numerical Data

The initial profiles of shear stress and enthalpy used to begin the

three examples of interest are obtained from the "exact" solutions of

reference 5. These exact solutions of the boundary-layer differential

equations are free from many of the limitations (such as low speed flow,

Pr = i, and use of integral or empirical methods) of other exact solu-

tions. Profiles with transpiration correspond to those at the end of a

porous upstream region of a flat plate having transverse blowing at the

wall at a rate proportional to the reciprocal of the square root of the



distance from the leading edge. In particular, profiles corresponding
to fwl = -i.0 and fwl = 0 (ref. 5) are used. These profiles are at a
distance x = L from the leading edge of the plate. In addition, the
conditions

Te : 3199.99° R

Me = 3.0

Twl/TadI = 0.5

Twl/Tad_ = 0.L59

for fwl = -i example

for fwl = 0 example

are chosen to determine the starting profiles. The first one is the

tropopause flight temperature (ref. 3). The last three correspond to

supersonic flow over a cold upstream wall. The ratios Twl/Tad I differ

between the transpiration and no transpiration upstream region e×smmples

because the upstream wall temperature is specified to be the same

(k52.34 ° R) in both cases but the recovery factors in the upstream region

are different. The choice of T e influences the base of the viscosity

law mostly, and for these flat plate exanples probably does not restrict

the applicability of the results to other conditions of temperature and

pressure, provided the Mach number and ratio of wall temperature to

adiabatic temperature are unchanged. Computation of an example showed

that halving Te did not change the res_llts by more than i percent.

Tables I and II list the starting profiles of enthalpy and shear

stress. The tables list profiles at x/L = i at the end of upstream

regions having a given wall temperature, with and without transpiration,

respectively. The corresponding curves are shown in figures 2 and 3.

The dimensionless terminology is used in the computer program, and is

explained in the section "Symbols."

Other numerical data used in the computations were

7 =1.4

R = 1716.5 sq ft/sec 2 OR

Cp = 6007.$ sq ft/sec 2 OR

S = 216 ° R

Pr : o.72

The Reynolds number per foot based on tropopause outer edge conditions

(Pe = 472"68 ib/sq ft, Te = 389.99 ° R) was 6.93xi06.
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The Examples and Results

Case i.- The case of supersonic flow over a solid cold wall

(Tw/Tad I = 0.5) at uniform wall temperature downstream from the porous

region is shown in figure 4. It is seen in figure 4(a) that the skin-

friction parameter starts at less than 20 percent of that for the no

blowing case, rising to a value of less than 70 percent of that for the

no blowing case in a solid length equal to the porous length. The ratio

of local heat transfer with upstream transpiration cooling to local heat

transfer without upstream transpiration cooling for the same wall tempera-

ture ratio (Tw/Tad I = 0.5) and Mach number (but necessarily different wall

temperature) is shown in figure 4(b). It is seen that in a region down-

stream from a porous region in a length equal to the porous length, use

of upstream transpiration cooling requires a local removal of heat only

22 to 76 percent of that required to maintain the specified wall tempera-

ture ratio without upstream transpiration. Figure 5 shows the heat-

transfer comparison for the case in which the local heat-transfer ratio

is based on the condition that the upstream region wall temperature be

the same for the porous and nonporous upstream regions. The ratio of the

local heat transfer, computed for this example, to that of the solid flat

plate at the same Mach number, flight conditions, and wall temperature

(but necessarily different Tad I and Tw/Tadl) varies from approximately

0.20 at x/L = I to 0.70 at x/L = 2. This is a significant reduction in

local heat transfer required to maintain a given wall temperature.

Cases 2 and 3.- Figure 6 presents the results of supersonic flow

over an adiabatic solid wall downstream from a fixed temperature region

cooled with and without transpiration.

The skin-friction results are shown in figure 6(a). A very substan-

tial reduction in skin friction is effected by the upstream transpiration,

as would be expected.

The ratio of wall temperature to free-stream stagnation temperature

in the adiabatic region is presented in figure 6(a). Because of the

assumption of constant Cp, this temperature ratio is the same as the

enthalpy ratio.

The two curves labeled "transpiration upstream" are results of only

one example in which two different methods of computation of the wall

enthalpy were used. The solid curve was computed by the series expansion,

equation (AIS), and the broken curve was computed by Simpson's rule,

equation (AI6). The use of Simpson's rule instead of the series expansion

in the computation oT Tw/T t results in a small saving of computer time.

However, in reference 9 it was found that the Simpson's rule solution

gives poor convergence in regions not far downstream from x/L = i for

some examples. The maximum difference between the two Tw/T t solutions

is approximately 1 percent, from which it can be concluded that the

Simpson's rule expression yields satisfactory results for this example.
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However, the convergence difficulties reported in reference 9 require

that caution be exercised in the application of Simpson's rule in

general. To be safe, the series expansion for Tw/T t should be used

instead of Simpson's rule.

The first point (x/L = i) computed by the program is designated

"end of porous wall" on the ordinate. In each case, it coincides with

the exact solution corresponding to the starting profiles used. At that

first point, Vw, the component of velocity perpendicular to the wall, is
different from zero. At the next step (x/L = 1.0004), however, vw is

specified to be zero. This is a realistic physical situation. An actual

discontinuity in transverse velocity at the wall will exist where the

porous region joins the solid wall. A discontinuity in skin-friction and

heat-transfer parameters corresponding to the specified discontinuity in

the transverse velocity at the wall is evident (between the dotted line

marked "end of upstream region" and the beginning of each curve) in

figures 4, 5, and 6. The series expansions used in the computation of

these parameters (eqs. (AI3) and (AIS)) show vw to be responsible for

the discontinuity. A similar discontinuity in Tw/T t caused by specified

discontinuities in both vw and qw is seen in figure 6. The terms

involving qw and vw responsible for the computed discontinuity appear
in the series expansion (eq. (AIS)). This unrealistic situation of

discontinuous wall temperature results partly from the unrealistic speci-

fication of discontinuous heat transfer. There is of course no perfect

insulator; that is, q cannot be achieved discontinuously in actual flows.

Conduction would smooth out the wall temperature discontinuity.

COMPARISON WITH EXISTING SOLUTIONS

The results obtained above are compared with those computed by the

methods of references i and 2 and are shown in figures 7 and 8. The

comparison is made on the basis of identical physical situations; that

is, the results of each method are presented for the same flight condi-

tions, blowing rates, and porous-wall temperature level. Before discussing

these curves in detail, it is of interest to discuss the methods by which

these various results were obtained.

There is little agreement in the results of the three methods. This

is no doubt due to different methods of solution and to different assump-

tions made in joining the flows of the porous and nonporous regions.
Some of the differences in the three methods of solution appear in the

table below.
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Rubesin and Libby and
Features of solution Inouye Pallone Finite

(ref. I) (ref. 2) difference

Step-by-step integration of exact
boundary-layer equations X

Polynomial solution using von K_rm_n
integral method X X

Prandtl number 1.0 1.0 0.72

Viscosity temperature law Linear Linear Sutherland

Discontinuity in wall shear stress
allowed No Yes Yes

References i and 2 are polynomial-type solutions employing the
von K_rm_n integral methods. These are by nature approximate methods in
that they deal with bulk or gross properties of the boundary layer. The
finite difference solution, on the other hand, deals directly with the
differential equations in finite difference form and solves them in a
point-to-point pattern progressing downstreamfrom a given solution at
the end of the porous region.

The assumptions madein joining the porous and nonporous flow fields
differ between references i and 2. The present report did not have to
make such assumptions. In reference 2 velocity and enthalpy profiles
downstreamfrom the porous region were determined by specifying continuous
flux of mass, momentum,and energy at the interface between the porous
and nonporous regions. This leads to a discontinuity in local velocity
and stagnation enthalpy profiles (as well as shear stress) at that inter-
face. On the othe_ hand, in reference i a continuous wall shear stress
was assumedat the interface. This seemsto be an essential difference
between the solutions of references i and 2. The finite difference solu-
tion yields discontinuities in skin friction, heat transfer, and wall
temperature at the interface, as was discussed previously.

It is to be expected that these major differences in methods of
solution and assumptions will lead to different results. However, no
attempt has been madeto establish quantitatively the influence of any
detail of the different methods on the lack of agreement amongthe three
solutions.

Figure 7 showsthe skin-friction result of the finite difference
solutions comparedwith those of references i and 2. The finite difference
solutions of figures 4 and 6 having upstream transpiration are adjusted
to correspond to the ordinate shown in figure 7 by means of the appropriate

values of_Rex/C I. It is seen that there is little difference between
the finite difference solutions for the insulated and the cold walls.

As was indicated above, the skin-friction results of all three methods
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of solution differ appreciably. It is seen that the initial discontinuity
in the reference 2 analysis is considerably larger than that of the
finite difference solutions. It should be mentioned that the curve d

was obtained by computing cfiRex_ I by the method of reference 2, and
dividing the result by the standard value 0.664 (ref. 5) adjusted
slightly for the appropriate values of Ci.

The wa_l temperature computation results of several solutions for
supersonic flow (Me = 3.0) over an adiabatic solid wall downstreamfrom
a cold porous region having wall temperature level Twl/Tadi = 0.5 and
fwl = -i are shownin figure 8. Curve a is obtained from the Rubesin and
Inouye analysis. Curve c is the finite difference solution using the
series expansion (eq. (AIS)). Curve d is obtained by the Libby and
Pallone solution (ref. 2). It is seen that the latter solution predicts
considerably more thermal protection than does either a or c.

The thermal analysis of reference i depends on the skin-friction
results, which differed from those of the finite difference solution.
Hence, it is not surprising that the wall temperature results of the two
methods differ (curves a and c, fig. 8). However, curve b in figure 8
is the result of the thermal analysis of Rubesin and Inouye when the
skin-friction results of the finite difference solution were used in that
analysis. The curve shows improved agreement between the wall temperature
results of the two methods of solution. The mathematical details involved
in the use of finite difference results in the Rube_in and Inouye analysis
are presented in appendix B.

A comparison of the heat-transfer results of the finite difference
solution to those of reference i is shownin figure 9. The analysis of
reference 2 applies only to the adiabatic wall condition, and cannot be
included in this comparison. Figure 9 is a plot of the ratio of local
heat transfer with to that without upstream transpiration cooling at
fixed flight conditions and wall temperature. Because the wall tempera-
ture is constant in this exampleand Pr = I in reference I, Reynolds
analogy as presented in reference 12 was used to obtain the Rubesin and
Inouye heat-transfer curve: The Rubesin and Inouye results are observed
to lie above those of the finite difference solution for the most part.
This is not surprising because the samebehavior was observed in the
ratio of skin-friction coefficients (fig. 7) on which the heat-transfer
results of reference I depend.

The differing results presented for three methods of solution raise
an obvious question: Which of these solutions is the best representation
of the physical situation? This can be answered by briefly looking again
at the methods by which the results were obtained. Briefly recapitulating,
the finite difference solution is a direct numerical solution of the
finite difference form of the exact boundary-layer equations. Because
the step width is chosen such that errors die out, the solution of the
finite difference equations is considered to be correct. The convergence
of the finite difference solution to that of the differential equations
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appears to be satisfactory in examples where it can be checked. The
physical flow is computedtaking specified boundary conditions (continuous
or discontinuous) into account as they occur. The resulting solution is
considered to be as realistic a representation as the flow situation that
was specified.

In contrast with the above, the polynomial-type solutions of
references i and 2 are by nature approximate solutions dealing with bulk
properties across the boundary layer. Patching of solutions for the
porous and nonporous region necessitates making additional assumptions°
Which assumptions are appropriate is not clear.

For these reasons, the finite difference solutions are considered
to be more accurate than those of references i and 2.

CONCLUDINGREMARKS

For these examples of upstream transpiration cooling, the finite
difference solutions not only produce results different from those of
references i and 2, but different conclusions as well. Where the Libby
and Pallone analysis would be very optimistic about the effects of
upstream transpiration cooling, and the Rubesin and Inouye analysis would
be quite conservative, the finite difference solution takes a stand
between these saying that the effect is quite good in a limited region
as follows.

Upstream transpiration cooling affords significant thermal protection
to a solid region equal in length to the porous region for the flow con-
ditions used in the computations (Me = 3.0, Twl/TadI = 0.5, fwl = -i,
tropopause flight temperature). In particular, for the example of uniform
wall temperature, the upstream transpiration cooling requires removal of
heat in the solid region only 20 to 70 percent of that required to maintain
that wall temperature without upstream transpiration cooling.

For the case of an adiabatic wall downstreamfrom the transpiration-
cooled region, the finite difference solution for the temperature ratio
_ _-_Tw/Tt) lies below that of reference i, but considerably above that of

2. Improved agreement between the Tw/Tt solution of refer-reference
ence i and the finite difference solution is achieved when the skin-
friction results of the latter are used in the thermal analysis of the
former. It is shownby finite difference solutions that, for a fixed
upstream region temperature, upstream transpiration cooling affords much
better thermal protection to the adiabatic solid region downstreamthan
does upstream cooling without transpiration.
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The finite difference solutions for skin friction lie significantly

below that of reference i and are considerably different from that of

reference 2. Similarly, the finite difference solution for heat transfer

lies below that of reference i for the most part.

Because of the methods by which the results were obtained, the
finite difference solutions are considered to be more accurate than those

of references i and 2.

As interest in more complex boundary-layer flows grows, finite

difference solutions will probably assume the major burden of boundary-

layer computations; for example, axisymmetric boundary-layer flows with

variable Euler number can be computed by the finite difference scheme.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Nov. 26, 1955
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APPENDIX A

MATHEMATICAL DESCRIPTION OF THE SOLUTION

Basic equations.- A basic description of the solution is included

here. A detailed description is found in references 6, 7, 8, and 9.

The steady-state, two-dimensional, boundary-layer flow of a

compressible fluid with variable properties can be described by the

Crocco form of the boundary-layer equations. These are

T2Tuu+_p e 'Tu+[U(P_)x-_up e ']T = UO2T x (A1)

(A2)l-Pr iuTT u + Ta+_pe, (iu+U) = upBi x
Pr Pr

In the examples computed in this report_ Pe' was zero. However_ the

computer program is not limited to examples having no pressure gradient.

The equation of state of a perfect gas and the Sutherland viscosity

law are used and are, respectively,

P : Pe : pRT - 7-i pi (A3)
Y

1.5

B _ (i) it+cpS (A4)
_t _t i+cpS

The latter assumes constant specific heat. A power law approximation l

for the viscosity, which when differentiated is used for the computation

of the term u(pB) x in the solution of equation (Al), is

0 •76

: (i7) (AS)b t

One of the equations used to obtain coefficients in series expansions at

the wall is the momentum equation before v is eliminated by use of the

continuity equation_ that is

_Pe'
pUUx T + pv = T + TU

iThe accuracy of the approximation has been investigated in

reference 8 and appears satisfactory.

-_ (A6)
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Boundary conditions.- The boundary conditions at the outer edge of

the boundary layer are

Te = o (AT)

Ue2 (AS)
ie = it 2

At the wall, the boundary conditions are

T = Tw

and if the wall temperature is specified,

iw = iw(X)

or conversely if the heat-transfer rate is specified,

(Ag)

(AlO)

iuwmw (All)% - Pr

Series expansions near the wall.- The square of the shear stress is

expanded in the series

T2 = do+dlu+d2u2+d3u3 (Al2)

which is written for the first two points out from the wall described by

u = nAu, where n = i and 2. The coefficient d s is eliminated from the

resulting equations, and the remaining coefficients are determined from

boundary and compatibility conditions, as described in reference 6. The

resulting equation for the shear stress at the wall point x/L = l+mZkx/L

is (for Pe' = 0)

Tw- 6 AUPwVw+7 - J_9 (AUPwVw)2 + _ T2m,l - _i Tm,22 (AI3)

If iw (eq. (A10)) is specified, a series expansion useful in

determining the heat transfer at the wall is

iuT : bo+blu+b2u2+bsuS+b4u 4 (Al4)

This equation is written through the three points n : i, 2, 3 out

from the wall at which u = Au, 2Au, and 3Au, respectively, all at an

x location x/L = l+mAx/L. Both b s and b 4 are eliminated from the
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resulting three equations. The remaining coefficients are determined as

before. The resulting equation for iuw in the absence of pressure

gradient is

108(iUT)m,1-27(iUT)m,a+4(iUT)m, sl

iuw = TW 185T_+6auPr0wvw[larw+3au(Pr-l)0wVw

+

6AuPrTwIllTw+3hu(Pr+l) PwVw] - 18Au2Pr_wixw

85Tw2 +6f_uPr PwVw lllTw+3_u (Pr-1)PwVw I

(AI5)

If heat transfer is specified by equation (All), the wall temperature

(or enthalpy) is computed by either of two methods. The first is

Simpson's rule which becomes (ref. 8):

i
iw : _ (im,l-im,s)+im,2 -iuw_u

(A!6)

The second is a series expansion for ia as follows.

.2
1 = Co+ClU+CeU2+csuS+c4u 4 (il7)

This equation is treated in the same way as equation (AI4), the

coefficients being determined by boundary and compatibility conditions.

The result is

i (i 1_27im,a+4im,s+66 PrqAu
iw = _ \08im' Tw

-- +

i [pwvw (Pr-1)18PrAu 2 + _ L Tw

(AIS)

In reference 9, the Simpson's rule method was found to result in poor

convergence_ which made it necessary to use the series expansion to

obtain iw.

Equations (Al).and (A2) are solved at every boundary-layer mesh

point as described in reference 8. Equations (A13) and (AI5), (Al6), or

(AI8) are solved at every wall point. In this manner, the solution

progresses downstream.
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APPENDIX B

T}[E FINITE DIFFERENCE SOLUTION AND THE RUBESIN AND

INOUYE THERMAL ANALYSIS

In the section comparing finite difference resuits with those of

existing solutions; the use of finite difference skin-friction results

in the thermal analysis of reference i was discussed. The mathematical

details are as follows. A quantity used in reference i is

s(x) = kaY--/x,--
(B1)

The middle term is in the terminology of reference i, and s(x) is the

quantity defined in that reference. Also _(_) from equation (A83) of

reference i becomes

S° s(x) S° TwTw
_(_) : _ - u_ T_ w

(B2)

The subscripts e and _ are interchangeable. Assuming that

Tw % (B3)

(where C l is the Chapman-Rubesin constant (ref. 4) written for the

porous section), leads to

_(_) : 50 c_
u_ _ _w (m)

Requiring that o(i) : 0.325 (ref. i) and using values from the finite

difference solution, one may determine _({) from equation (B4). This

makes possible the integration of equations (A83) and (A92) of reference i,

yielding the wall enthalpy distribution shown in curve b of figure 8.
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APPENDIX C

COMPUTER PROGRAM MODIFICATIONS

The computer program described in block form in figure ii,

reference 8, and modified by figures A-I and A-2 of reference 6 was

modified again in several ways to facilitate computations of the present

examples.

Because vw was zero for x/L > I, but different from zero for

x/L = i in the present examples, the obvious Change was to set vw = 0

after the computation of the points at m = 0 was complete. This was

done in the part of the computation shown in sketch (a).

Compute iuuw, St Pr 2/3 Re_J_x/C , TUW , etc.

(see fig. A-I, ref. 5)

I Set vw = 0 for m > 0

I I_i i

! I

! Punch !
L l

Sketch (a)

Because the examples were longer than those previously computed by

this program, the output was modified to read out results of profiles and

wall points of stations in which m was a given multiple of 8. This was

accomplished by means of specified parameters P, LkP, and Q in the sub-

routine of sketch (b). Sample values of these quantities used for

punching every thirty-second downstream station are AP = 32, and

Q = 30.8, where the initial value of P is 31.9.
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| m Ja

|
I Increase m I
| (see fig. ii, ref. 8) I
I 0

I

! pr2/s R_J_x/
I

I Punch St C, etc (see fig ii, ref 8)
o • •

| j

I Restore punch commands I

Increase

P by ZkP

I Is

Yes

(First time around

after punch operation)

Remove and store

punch commands

P-m < O?

No

l
r _

(Second time around

after punch operation)

Exterior flow (see fig. ii, ref. 8) n
L ................

Sketch (b)

The insulated wall examples required program modifications before

entrance to the exterior flow routine (i.e., at the end of the modifica-

tions of sketch (b)). These can be described best by one block of

commands which, after m has been increased to i, proceeds to

i. Compute io-i e in the exterior routine•

2. Set Vw, iuw , q, and Tuu w equal zero, in the wall point routine.

3. Compute iw by either the series expansion or Simpson's rule

in the wall point routine.
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4. Computethe recovery factor in the wall point routine.

5. Skip this entire block after the program has been modified once.

These modifications to the computation schemediscussed in
references 6 and 8 describe the program used to compute the examples of
this report.
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TABLE I.- STARTING PROFILES FOR M e = 3.0, Twl/Tad I = 0.5,

fwl = -i.0, Te = 389.99 ° R, A_ Twl = 452.34 ° R

U/Ue

0

i÷ i.+

1•0356050

•05 1.1006470

.I0 1.1531480

•!5 1.1968560

.20 1.2310290

•25 1.2587460

•30 Ii.2798800

•35 1.29477801

.40 1•3037270

.45 1.3065330

•50 1.3035180

.55 i•2950950

.6O 1.2810580

•65 1.2608000

•70 1.2343670

•75 1.2021270

.80 1.1633110

.85 1.1169350

•901 i. 0617830

.95 ! .9948670

1.00 .8928550

o. 0158900

•0269720

.0376120

.0475810

.0567680

•0650710

•0722150

•0787510

•0839720

•0874830

•0906380

•0920020

•0919220

•0901340

•0864770

•0808910

.O72999O

•0623030

•0481770

•0292160

•0000000
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TABLEII.- STARTINGPROFILESFOR Me = 3.0, Twl/TadI = 0.459,

fwl = 0, Te = 389.99° R, ANDTwl = _52.34° R

u/u e i+

0 1.0356050

•05 1.0860114

.!0 1.1313143

•15 1.1714895

.20 1.2064998

.25 1.2340550

•30 1.2563106

•35 1.2733546

.40 1.2850720

•45 1.2921466

.5011.2896725

.5511.2834143

.60ii.2714!97
•65 i 2534401

•70 1.2292588

•75 1.1985191

.80 1.1600998

.85 1.1161789

•90 1.0619288

•95 .9952259

1.00 .8928550

+
T

0.1487940

.1487687

.1486469

.1483728

.1478896

.1469696

.1456360

.1438292

.1414685

.1383408

.1343205

.1294052

.1234532

.1162937

.1077263

.0975240

.0854255

.0710042

.0534711

.0315010

.0000000
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.8

Finite difference solution

"Exact" solution (ref. 5 )

.6

.4

.2

0

cf ,_Rex/C j

St Pr z/$ _/Re x/C =

I I I I I

500 I000 1500 2000 2500

Number of steps along wall

I I

1.0

Figure

1.5 2.0

x/L

i.- Flat plate solution without upstream transpiration cooling;

Me=3.0 , Tw/Tad=0.5, fw=O, tropopause flight temperature.



i ÷

1.2

I.O

.8
0

I I I I l

.2 .4 .6 .8 1.0
u/u,

.I0 -

.O8

r + .06

.04

.O2

0

n

I I I i
.2 .4 .6 .8 1,0

ulue

Figure 2°- Flat plate enthalpy and shear stress starting profiles for

transpiration cooling; M =3.0, Twl/Tadl=0.5, fwl=-l, Te=389°99 ° R,

Twi=452.34o R o
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I0

.8 I I I I I
0 .2 .4 .6 .8 1.0

U/Ue

.16 -

.12 -

.08 -

.z+-

.04 -

I I I I
0 .2 .4. .6 .8 1.0

U/Ue

Figure 3.- Flat plate enthalpy and shear stress starting profiles for

cooling without transpiration; Me=3.0, Twl/Tad1=0.459, Fw1=O,

Te=389.99 ° R, Twi=452.34° R.
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.8-

.6

.4

,2

End of
upstream -
region

0
.0 1.5

x/L

(a) Skin-friction results.

- 6

--,4

0
2.0

7

.8

.7

.6
-,_

i iol
_. ,, .4

S
ig ig J .3

.2
End of

upstream
region I

!

I I

1.5 2.0

x/L

1.0

(b) Heat-transfer results.

Figure 4.- Supersonic flow over cold wall at uniform temperature

downstream from transpiration cooled region; Me=3o0, Tw/Tad1=O°5,

tropopause flight temperature.
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8

i .6

I

4

.2
End of
u_Te_ -
region

I ]0
1.0 1.5 2.0

x/L

Figure 5.- Ratio of local heat transfer with to that without upstream

transpiration cooling at fixed flight temperature and wall

temperature; Me=3.0, Tw/Tadl=0.5 for plate with porous upstream

region, Tw/Tadl=0.459 for plate with solid upstream region,

Tw=452o3 _° R for both plates, tropopause flight temperature°



3O

.7

6

5

4

:3

2

No transpiration upstreom-k

End of .I
upstream region

0
1.0

.8-

.7

Tw .6
Tt

.5

End of unstrearr
region

.4
1.0

I
1.5

x/L

(a) Skin-friction results.

I
2.o

No transpiration ups__

,.,
I,_"/ _ fwj iw computed by

O. 5 - I Series expansion
O. 5 - I Simpson's rule
0.459 0 Series expansion

I I

1.5 2.0

x/L

(b) Wall temperature results°

Figure 6.- Supersonic flow over adiabatic wall downstream from region at

fixed temperature cooled with and without transpiration; Me=3.0 ,

Twi=452.34° R, tropopause flight temperature.
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a

Rubesin and _.

Inouye _ Finite difference _ b

"ref I" _ solution for uniform ____ c

/ __.._.'_'_ Finit e difference

/ /_ solution for
/ // adiabatic wall d

/ _ _ LibbY ond Pallone
Iodiabat cwa,, 

(ref. 2 )

End of
upstream -_I I I
region 1.0 1.5 2.0

x/L

Figure 7.- Comparison of skin-friction results; Me=3.0 , Twl/Tadl=0.5,

fw1=-l, tropopause flight temperature.
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.T-

.6

,5

.4

.3

2

.I

Rubesin and

Inouye

Finite difference fret. I ) _ _a

solution combined _ b

with Rubesin _ _.---- c

Finite difference

-----'- d

Libby ond

( ref. 2 )

Pallone

I I

I_ 1.5

x/L

Figure 8.- Comparison of thermal results for adiabatic wall;

Twl/Tadl=0.5, fwl=-l_ tropopause flight temperature.

2.0

Me=3.0,
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O
O

I {

{°
II

1.0

.9

.8

.7

.6

.5

.4

.:5

.2

.I

Rubesin and Inouye
( ref. I

Finite difference solution

0
1.0 1.5 2.0

,/,

Figure 9.- Comparison of heat-transfer ratio results (ratio of local

heat transfer with to that without upstream transpiration cooling at

fixed flight temperature and wall temperature); Me=3.0, Tw=452.34° R,

tropopause flight temperature.

NASA- Langley Field, Va A-150
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